Hydrographic Survey Category B Course

recognized by the International Hydrographic Organization

The CIDCO course addresses all topics of hydrography, from geodesy, positioning, underwater acoustics and bathymetry, tides and water levels, to hydrographic data processing. As such it is a comprehensive programme in hydrography, which delivers a high quality and innovative educational content in both foundation sciences and hydrographic practice at sea.

CIDCO Hydrographic Survey Category B Course

The course has been designed to meet the international standards of competence at Category B, as described in the S-5 publication of the International Hydrographic Organization (IHO).

Upon completion, you will receive a CIDCO certificate, stating that you completed a programme.

There is a high demand from the industry for hydrographic surveyors to perform a growing number of marine and inland survey works. Ranging from near-shore, off-shore or inland waterways surveys, the maritime industry (dredging, construction, oil & gas, specialized survey companies) is growing fast.

Completion of a IHO recognized course will gives you the opportunity to work world-wide in an area of sustainable and rapid development.

As a Category B surveyor, you will be able to contribute to the hydrographic activities of companies, government agencies, in accordance to IHO and/or industry quality standards.

Entry requirements : 

Entry requirement of this course are the following:

  • To have graduated with a Technical Diploma in Surveying, Geomatics or equivalent;


  • To have graduated with a university degree (B.Sc.) in land surveying/geomatics.


  • To have graduated with a university degree (B.Sc.) in a domain related to geomatics and have relevant experience in geomatics and/or hydrography.


  • To have graduated with a university degree (M.Sc.) in a domain related to geomatics and have relevant experience in geomatics and/or hydrography.

Student applications must include evidence of pre-requisite in geomatics in the following disciplines, for a minimum of two years:

  • Geodesy and land surveying;
  • Information technologies;
  • GIS and spatial data analysis;
  • Applied mathematics and statistics for geomatics applications;
  • Satellite positioning (GNSS).

Student application must include: 

  • Transcript showing that the student has validated key courses in geomatics by a mark of at least 60%;
  •  The detailed syllabus of the program they graduated from;
  • A CV including the job title(s), company name(s) and professional records showing relevant experience in hydrography;
  • All relevant diploma(s) related to hydrography.

Entry to the CIDCO course will be done by a file examination. Additional information such as references might be asked. Entry examination and/or interview might be done if the selection committee is not completely satisfied by the information provided by the candidate and to confirm that the candidate has the academic and/or professional background adequate for his admission. 

Apply Now

The CIDCO Course in Hydrographic Surveying is provided over a period of 38 weeks and it is composed of two main parts, which are the theoretical part and the Comprehensive Final Field Project (CFFP). The theoretical part of the course is given in an "e-learning" formula. It takes place over a period of 33 weeks from October of every year to mid-June of the following year. A total of 9 modules are covered during the theoretical training. It is composed of weekly supervised hours provided by CIDCO teachers to explain the important concepts of the e-learning lessons (Lectures) and led the students to apply the theoretical knowledge and to complement the theory component (Practicals and Tutorials).

At the end of each two weeks, the participants take an assignment to assess the knowledge acquired during the theoretical and practical sessions. Assessment is also done via Quizzes which are scheduled after every Lecture and via Exams which must be achieved throughout the e-learning period of the program.

The e-learning part of the course is followed by the CFFP. The Comprehensive Final Field Project (CFFP) lasts for a period of 5 weeks and it's done in class and on the field, at the marina of Rimouski and on the St. Lawrence River. The CFFP represents the finality of the training where students will carry out a various hydrographic surveying task. They will plan their data acquisition, acquire different hydrographic data, process the data and produce the related product, all under the supervision of the CIDCO’s teachers

Provide students with the theoretical and practical bases

This course aims to provide the theoretical foundations and practical field experience in order to enable hydrographic surveyors to execute hydrographic surveys, to monitor and evaluate survey data quality. The job profiles of graduated students are targeted on :

–   Watch leaders positions on a large survey operation (nautical charting surveys, off-shore surveys)

–   Hydrographic surveyors on survey units deployed for localized survey operations (ports, coastal engineering surveys, inland waters, survey launch in support of a large scale survey operation).

The learning outcomes of this course are :

  • Knowledge of the marine environment in the context of a hydrographic survey;
  • Knowledge of operation principles of hydrographic system components (Single Beam and Multi Beam Echo Sounders, Positioning systems, Inertial Navigation Systems, Tide measurement sensors and systems, Undersea systems (positioning systems, autonomous underwater vehicles, remote surveys systems, acoustic imagery systems) and data quality assessment;
  • Ability to set-up a hydrographic system in a survey vessel, awareness of data quality required by  hydrographic instructions;
  • Execution of a hydrographic survey within a specified level of data quality and in compliance with safety rules;
  • Execution of data processing tasks using dedicated software for the production of hydrographic products (geo-referenced digital sea-floor models, acoustic imagery).

- Step #1 : E-learning, within a period of 9 months.

This mode of delivery includes:

  • Unlimited access to the CIDCO e-learning platform, which includes videos, electronic lessons and self assessment quizzes, an impressive number of data sets to illustrate the major concepts of each modules;
  • Simulation programs written in SCILAB;
  • GNSS datasets handleable in RTKLIB;
  • Data layers handleable in QGIS;
  • Access to CIDCO server to run professional software for bathymetric data processing (Caris HIPS&SIPS);
  • Web-conferences;
  • Tutoring by CIDCO experts.


Modules descriptions : 

Geodesy and Spatial Referencing – GSR

Content outline:

The part devoted to geodesy (geometrical, physical, map projections) is, in view of the entry requirements, a refreshing module. The Least square theory, with example of usage in hydrography is detailed in the second part. A refreshing module on land surveying with focus to hydrographic measurements is done in the third part. It is followed by a comprehensive study of spatial referencing of mobile survey systems hybrid measurements (Positioning,  Plateform attitudes, range measurement by single and multibeam echo sounders and LiDAR). This part includes a description of the different frames (local geodetic, survey plateform body frame, sensor frames) and associated transformation between these frames.

The main learning outcomes of GSR are:

Describe geodetic reference systems in use and achieve transformations between geodetic systems; Perform geodetic line computation and map projections. Measure and adjust survey control data from angle and distance measurement devices. Understand mobile mapping concepts and associated frames, perform data spatial referencing from hybrid measurements of position, orientation and ranging.


Positioning – POS

Content outline:

Global Navigation Satellite Systems (GNSS). This part presents the fundamentals of GNSS and describes the GPS, GLONASS, GALILE and BEIDOU system. The module introduce the use of RTKLIB, a free software for GNSS post-processing. Statistical tools details the statistical analysis of least square solution, with application to hydrographic problems. A detailed presentation of Inertial Navigation Systems (INS) comprises principles, practical alignement of INS, the problem of heave estimation, and INS/GNSS hybrid systems. Subsea positioning presents the principle of acoustic positioning , including Short baselines, Ultra Short base lines, Long base lines.

The main learning outcomes of POS are:

To operate a hybrid positioning system and to perform positioning quality control. To differentiate the main GNSS modes and interpret quality factor in relation to sources of errors. To describe the principle of acoustic positioning system, to perform LBL and USBL calibration. Understand the concepts of inertial navigation systems, perform the static and dynamic alignment of an INS, describe heave measurement principle and sources of errors.

Environnement - ENV

Content outline:

Physical oceanography, composition of sea water and its influence on acoustic propagation; Marine geology gives the fundamental of seabed composition, sediments and deposition, seabed sampling techniques ; Marine geophysics outline the main types and applications of seismic surveys, gravity surveys, and magnetic surveys.

The main learning outcomes of ENV are:

To understand the role of ocean physical parameters observations in support to a hydrographic survey, global/coastal ocean circulation and sediment transport principles To describe magnetic and gravity surveys To describe seismic surveys and the role of surface and acoustic positioning

Tides and Water Levels – TID

Content outline:

Tide theory, the origin of tide raising forces, tidal regimes. Tide measurement, different technology of tide gauges. Tide prediction. Introduction to tide modeling and usage of tide prediction tools . Sounding reduction techniques from tide information and depth measurements.

The main learning outcomes of TID are:

To describe the static tide theory, identify tidal regimes and harmonic constituents of a tide prediction model To use tide prediction models and to be aware of non tidal effects on water levels To deploy, calibrate and use tide poles and tide gauges To describe chart datums  and separation models.

Bathymetry – BAT

Content outline:

Underwater acoustics, acoustic transducers, propagation of sound in sea water; Single beam echo sounders; Side scan sonars; Multibeam echosounders; Bathymetric LiDAR;

The main learning outcomes of BAT are:

To set-up a bathymetric measurement system, with the knowledge of oceanographic data and seafloor composition; To interpret water column data and sounders returns of a bathymetric system from the knowledge of acoustic parameters and environmental conditions; To calibrate, apply quality control procedure of acoustic depth measurement systems. To set and optimize on-line acoustic parameters of a bathymetric system; To calibrate and set the acoustic parameters of a seafloor imaging system; interpret seafloor imaging for obstructions search; To describe several non acoustic bathymetry techniques.

Hydrography – HYD

Content outline:

This module details the methodology of different types of surveys, review the quality standards which apply to survey data, and describes the different types of survey system and their integration to survey vessels.

Risk of grounding,  different types of hydrographic surveys, introduction to depth measurements; Survey systems and survey methodologies; Data uncertainty, data quality standards ; Data acquisition system, integration of hydrographic survey systems; Products and reports.

The main learning outcomes of HYD are:

To execute a survey plan, for various types of hydrographic surveys To understand survey specifications and to check their adequacy with a survey system To install, set-up and calibrate a survey system To understand the source of errors of a survey system and to execute quality control procedure To produce survey documentation

Hydrographic Data Management – HDM

Content outline:

Hydrographic data management comprises data processing and  is presented together with professional software tools, like CARIS HIPS/SIPS. The module includes the concepts of GIS, and practicals make uses of the freeware QGIS.

Raw data and acquisition systems; Hydrographic data processing principle; Single and multibeam echosounder system data processing; Side scan sonar imagery; GIS; Hydrographic data format, data exchange and nautical charts.

The main learning outcomes of HDM are:

To process swath echo-sounder systems data from raw data to digital terrain models, in particular to be able to detect systematic errors, and apply data quality assessment methods To process SBES data, apply interpolation methods and evaluate DTM uncertainty To process (compensation, mosaics) side-scan sonar and interpret side-scan images To integrate survey data into a GIS,  structure survey data, and manage metadata. Produce minutes of bathymetry.

Nautical Science -NsC

Content outline:

• Meteorology;
• Seamanship;
• Survey operation and safety at sea;
• Navigation;
• Communications at sea.

The main learning outcomes of NsC are:
1. To understand the content of a nautical chart, the impact of data quality on a chart and plot points, routes on a chart
2. To get awareness of safety and emergency procedures on surveys vessels
3. To describe and practice instrument mooring, launching and recovery
4. To describe the main meteorological elements and to produce a short term forecast based on observations

Law of the sea – LAW

Content outline:

This module presents the essential of the United Nation Convention on the Law Of the Sea (UNCLOS) related to hydrographic activities. It also comprise a description of contract in the framework of hydrographic data production.

UNCLOS, delimitations; Liability of the Hydrographic Surveyor

The main learning outcomes of LAW are:

Understand the legal aspects related to the work of the hydrographic surveyor (contractual considerations and legal liability) Describe the international legal framework in which the hydrographic survey takes place


- Step #2 : Hydrographic survey project (5 weeks), on the Saint-Lawrence River at Rimouski, Québec, Canada.

The final field project represents the finality of the course.

The project lasts 5 weeks including one week of exams.

The work is done in class and in the field (marina of Rimouski, St. Lawrence River).

The students have at their disposal a number of hydrographic equipment, specialized software and the CIDCO hydrographic boat.

The learning outcomes of the course are:

  • Plan and organize data acquisition tasks for a hydrographic survey
  • Understand hydrographic instructions and detailed specifications for acquisition, processing and quality control
  • Produce different types of data and perform quality analysis to meet standards
  • Provide hydrographic products from acquired data
  • Write reports and survey documentation

2021-2022 Calendar

Inscription deadline : 2021-10-01

E-Learning GSR Geodesy and spatial referencing Oct.
2021 - Dec 2021
POS Positioning
ENV Environment
TID Tides and water level Jan.
2022 - March 2022
BAT Bathymetry
NSc Nautical Science
HYD Hydrography March
2022 – Jun 2022
HDPM Hydrographic data management
Law Legalaspects


(Rimouski, Canada)
CFFP Final
Comprehensive Final Field Project
(5 weeks)
Jul 2022 - Aug 2022

2021-2022 Fees

$ 10,100.46  + taxes = $ 11,613   (canadian dollars)

E-learning course Payment deadline Cost
--Deposit on acceptation $ 731
--Payment 1 2021-09-16 $ 3293.00
--Payment 2 2021-11-15 $ 3293.00
Residential training    
--Payment 3 2022-01-20 $ 4,296.00
TOTAL   $11,613.00 CAD*

* Costs include GST and QST and are in Canadian dollars. Costs are relative to training and exclude all living expenses (accommodation, food, transportation) for on-site training.

Apply Now


Fund transfer, by check or credit card via PayPal.

Deposit via PayPal Payment via PayPal
Payment 1 via PayPal Payment via PayPal
Payment 2 via PayPal Payment via PayPal
Payment 3 via PayPal Payment via PayPal